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Why?
A permanent EDM violates both P and T invariances.
By CPT invariance, /T ≡ /CP.
A neutral system is easier for measurement.

What they tell?
An atom is composed by electrons and nucleons, so its EDM receives
contributions from

1 Electron EDM: de
2 Nucleon EDMs: dN = dn, p
3 Semi-Leptonic /P/T interactions: CeN

PS,S, CeN
S,PS, CeN

PV,V, CeN
V,PV, and CeN

T,PT
4 Hadronic /P/T interactions: (i) CNN

S,PS and CNN
V,PV or (ii) ḡπ, η, ρ, ω...

Ultimate goal
To express dA = dA(de, dN , ḡM, CeN ...) = dA(de, c̄eq dq, dc

q, w, c̄4q, θ...)
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Theorem
For a NR system made up of point, charged particles which interact
electrostatically with each other and with an arbitrary external field,
the shielding is complete. (Schiff, 1963)

Classical picture: The re-arrangement of constituent charged
particles in order to keep the whole system stationary
Quantum-Mechanical description: Schiff (1963), Sandars (1968),
Feinberg (1977), Sushkov, Flambaum, and Khriplovich (1984),
Engel, Friar, and Hayes (2000), Flambaum and Ginges (2002) ...

What this implies?
The measurability of atomic EDMs is severely constrained.
One has to look for the loopholes (Sc63, Sa68) in

relativistic effects (electron)
finite-size effects (nucleus)
magnetic interactions (electron–nucleus)
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Assuming one-electron only (a generalization to multi-electron is
straightforward):

〈dA〉 = 〈β de〉 + 〈dN 〉︸ ︷︷ ︸
intrinsic

+
∑

n

e
∆En

〈g.s.|H(int)
/P/T |n〉 〈n| x |g.s.〉 + c.c.

︸ ︷︷ ︸
polarized

Shielding of de

H(de)
/P/T = −β de · EN = [−β de · ∇ , H0]/e︸ ︷︷ ︸

(1)

+ ∆H(de)
/P/T︸ ︷︷ ︸

(2)

1 Leads to 〈[−β de · ∇ , x]〉 = −〈β de〉: the shielding!
2 Prop. to γ5, vanishing in the NR limit (no small component):

equiv. to the (β − 1) formalism (Sa68)
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Shielding of dN

H(dN )
/P/T = −dN · Ee = [−dN · ∇ , H0]/(Z e)︸ ︷︷ ︸

(1)

+ ∆H(dN )
/P/T︸ ︷︷ ︸

(2)

1 Leads to 〈[−dN · ∇ , x]〉 = −〈dN 〉: the shielding!
2 Contains composite operators: dN ⊗ C2,4..., dN ⊗ M1,3...,

dN ⊗ C0,2,4...(x), and dN ⊗M1,3...(x).
note: By definition, dN ≡ C1, so H/P/T due to C1(x) should be
considered as extra.

Caution
1 Above derivation is purely quantum-mechanical, that is, all

physical observables are OPERATORS.
The atomic/nuclear matrix elements are only taken at the final
stage.

2 de = de σ and dN =
∑A

i=1(ds + dv τ z
i )/2 σi + e ri︸︷︷︸

need /P/T NN force
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Definition
A residual nuclear charge moment with J = 1 (EDM-like) after the
shielding takes effect (SFK84), which contains operators C1(x) and
some terms in [dN ⊗ C0,2(x)]1.

Finite-size effect is manifest
Needs atomic w.f. inside the nucleus (FG02)

S =
oddX

k=1

bk
b1

1
(k + 1) (k + 4)

AX

i=1

„
yk+1

i yi −
(k + 4)

3
1
Z

»
yk+1

i (1 − 4
√

π

5
Y2(ŷi)) ⊗ dN

–

1

«

≈ 1
10

AX

i=1

„
y2

i yi −
5

3 Z
[y2

i ⊗ dN ]1 +
4
√

π

3 Z
[y2

i Y2(ŷi) ⊗ dN ]1

«

Difference from existing literature
1 How good is 〈A ⊗ B〉 = 〈A〉 ⊗ 〈B〉?
2 Quadrupole deformation is taken into account for I > 1/2

note: For deuteron: 1 : -1.67 : -1.33 (new) vs. 1 : -0.59 : -0.071 (old)
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For a paramagnetic system, all /P/T ingredients including
de: partially shielded
CeN : not affected by shielding
/P/T nuclear charge moments : S (partially shielded) and C3...
/P/T nuclear magnetic moments: [dN ⊗ µN ] (due to re-arrangement)
and M2...

all come into play. Which one dominates?
H-like atoms (only H is neutral) are the simplest paramagnetic
systems, where calculations can be simply performed and show
some systematics

solve Sternheimer equation: P
J′ |eJ′, J〉 =

P
n

−1
∆En

|n〉 〈n| z |J, J〉

〈dA〉 =
X

J′
〈I, I| ⊗ 〈J, J|H/P/T |eJ′, J〉 ⊗ |I, I〉 + c.c.

atomic ground state is 1s1/2, so eJ′ = 1/2 or 3/2
assuming Pauli approximation, analytical results are possible

note: The solution |J̃′, J〉 only depends on atomic physics, has
nothing to do with H/P/T .
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The growth rate as Z or A increases

dA(de : CeN
PS,S : S : Smag) = Z︸︷︷︸

(1)

×( Z︸︷︷︸
(2)

: A︸︷︷︸
(3)

: S︸︷︷︸
(4)

: Smag
︸︷︷︸
(5)

)

1 from the atomic structure calculation
2 the nuclear charge
3 the coherent contributions from nucleons (isoscalar)
4 r2r in S roughly scales as A2/3

5 M2 in Smag roughly scales as A2/3

Why not Z3 for de?
Because we consider a 1s1/2 electron, not a valence electron
whose energy gap from ns1/2 → n′p roughly decreases as Z
Even in the latter case, the ratio Z : A : S : Smag is roughly
unchanged
Is the contribution from de really the dominant one?
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Initial values for Z=1 with a crude estimate

d̄n = −d̄p ∼ 0.01 Ḡ(0)
π , dD ∼ 0.015 Ḡ(1)

π , Ḡ(2)
π ∼ 0

C(p,n)
PS,S ∼ gπee

g
πNN

1
m2

π

√
2

GF
Ḡ(p,n)

π ∼ −0.164 (±Ḡ(0)
π + Ḡ(1)

π )

dH ∼ −1.07 × 10−4 de − 1.58 × 10−11 (dn + 2/3 dD) + 0 − 6.72 × 10−8 dn

dD ∼ −1.07 × 10−4 de − 2.11 × 10−11 dD − 3.36 × 10−9 dD − 5.78 × 10−8 (2.90 dn − 0.77 dD)

Some observations
S or Smag is 2-3 orders of magnitude greater than CeN , decreases as
A2/3/A = A−1/3

Smag is 1-2 orders of magnitude greater than S, roughly keeps the same
as long as M2 exists
If dn,D/de ∼ 103–104 (SM gives 104–106), hadronic contributions are as
large as de and only decrease as A2/3/Z
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The Schiff theorem is derived at the operator level. The Schiff
operator and its matrix element, the Schiff moment, we got is
different from existing literature. For a deuteron, the difference is
huge, and check on nuclei of great interests like Hg, Xe, Ra
...etc. should be carried out.
For paramagnetic atoms, semi-leptonic and hadronic
contributions should be considered in order to establish how
effective these atoms can be used to constrain the electron EDM.
So, the Schiff moment of Tl, Schiff and MQM of Cs, ...etc. could
potentially be important.
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